Temperedness of $L^2(\Gamma {\setminus } G)$ and positive eigenfunctions in higher rank
نویسندگان
چکیده
Let $G=\operatorname {SO}^\circ (n,1) \times \operatorname (n,1)$ and $X=\mathbb {H}^{n}\times \mathbb {H}^{n}$ for $n\ge 2$. For a pair $(\pi _1, \pi _2)$ of non-elementary convex cocompact representations finitely generated group $\Sigma$ into $\operatorname (n,1)$, let $\Gamma =(\pi _1\times _2)(\Sigma )$. Denoting the bottom $L^2$-spectrum negative Laplacian on {\setminus } X$ by $\lambda _0$, we show: $L^2(\Gamma G)$ is tempered _0=\frac {1}{2}(n-1)^2$; There exists no positive Laplace eigenfunction in X)$. In fact, analogues (1)-(2) hold any Anosov subgroup $\Gamma$ product at least two simple algebraic groups rank one as well Hitchin subgroups <\operatorname {PSL}_d(\mathbb {R})$, $d\ge 3$. Moreover, if $G$ semisimple real $2$, then (2) holds $G$.
منابع مشابه
the survey of the virtual higher education in iran and the ways of its development and improvement
این پژوهش با هدف "بررسی وضعیت موجود آموزش عالی مجازی در ایران و راههای توسعه و ارتقای آن " و با روش توصیفی-تحلیلی و پیمایشی صورت پذیرفته است. بررسی اسنادو مدارک موجود در زمینه آموزش مجازی نشان داد تعداد دانشجویان و مقاطع تحصیلی و رشته محل های دوره های الکترونیکی چندان مطلوب نبوده و از نظر کیفی نیز وضعیت شاخص خدمات آموزشی اساتید و وضعیت شبکه اینترنت در محیط آموزش مجازی نامطلوب است.
Higher rank Einstein solvmanifolds
In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.
متن کامل$G$-Weights and $p$-Local Rank
Let $k$ be field of characteristic $p$, andlet $G$ be any finite group with splitting field $k$. Assume that $B$ is a $p$-block of $G$.In this paper, we introduce the notion of radical $B$-chain $C_{B}$, and we show that the $p$-local rank of $B$ is equals the length of $C_{B}$. Moreover, we prove that the vertex of a simple $kG$-module $S$ is radical if and only if it has the same vertex of th...
متن کاملL p norms of higher rank eigenfunctions and bounds for spherical functions
We prove almost sharp upper bounds for the Lp norms of eigenfunctions of the full ring of invariant differential operators on a compact locally symmetric space, as well as their restrictions to maximal flat subspaces. Our proof combines techniques from semiclassical analysis with harmonic theory on reductive groups, and makes use of new asymptotic bounds for spherical functions that are of inde...
متن کاملGENERALIZED HIGHER-RANK NUMERICAL RANGE
In this note, a generalization of higher rank numerical range isintroduced and some of its properties are investigated
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications of the American Mathematical Society
سال: 2023
ISSN: ['2692-3688']
DOI: https://doi.org/10.1090/cams/25